Effective Control Loop Optimization

by Dr. Jacques F. Smuts

EXFOR 2000

Montreal, Quebec, Canada

February, 2000

Presentation Overview

- The state of control loops in industry
- Control loop deficiencies
- Tuning methods
- Conclusion

State of Control Loops in Industry

• 50% of loops have equipment problems

- 85% of controllers are not optimally tuned
- 20% of controllers run in manual mode
- Loops with problems are simply detuned
- Plants run well only with frequent operator intervention

Most common control loop deficiencies

- Hysteresis
- Stiction
- Nonlinearity

Incorrect controller settings

Hysteresis

- Acts like backlash or deadband
- Mostly due to:
 - Play in mechanical linkages
 - Excessive friction in valve
 - Undersized actuator
 - Sticky positioner
- It decreases control loop performance
 - Adds dead time to control loop
 - Increases variability

Effects of Hysteresis

Cycling after setpoint change on flow loop

Valve had 6.1% hysteresis

Testing for hysteresis

Do two CO steps in same direction, then one in reverse

 $\% Hysteresis = dCO_3 - \left(dPV_3 \frac{dCO_2}{dPV_2}\right)$

Limits on hysteresis

Hysteresis should be kept below 2%
Process Gain amplifies the effect of hysteresis
Hysteresis x Gain should also be kept below 2%

Reducing hysteresis

- Overhaul or replace actuator linkages
- Replace or overhaul valve
- Use a larger actuator
- Overhaul an existing positioner
- Add a positioner

Stiction

- Static Friction
 - More force is required to induce movement than to sustain movement.
- Mostly due to:
 - Over-tightned valve stem seal
 - Sticky valve internals
 - Undersized actuator
 - Sticky positioner
- It decreases control loop performance
 - Introduces cycling into the control loop
 - Increases variability

Effects of Stiction

Loop cycled continuously in automatic

This is called a stick-slip cycle

Valve had 1% stiction

Testing for stiction

 Do small CO steps in the same direction until the PV has moved twice.

• Record %CO change between PV movements.

Limits on stiction

• Stiction should be kept below 1%

- Process Gain amplifies the effect of stiction
- Stiction x Gain should also be kept below 1%

Reducing stiction

- Replace or overhaul valve or its internals
- Use a larger actuator
- Overhaul existing positioner
- Add a positioner

Nonlinearity

Different gains under different conditions

- Mostly due to:
 - Valve characteristic not matched with process characteristic
 - Nonlinear process e.g. pH control
- It decreases control loop performance
 - Optimal PID tuning only at one point
 - Instability or sluggishness everywhere else

Effects of Nonlinearity

Control loop reacts differently depending on load

Valve had an incorrect characteristic

Testing for nonlinearity

- Obtain steady CO and PV over as wide a range as possible
- Plot PV against CO

Limits on nonlinearity and Process Gain

Gp_{max} should be less than 2

- Gp_{min} should be greater than 1/2
- Gp_{max} / Gp_{min} should be less than 1.5

Reducing nonlinearity

- Correct valve trim
- Use a valve with correct characteristic
- Use a different feedback cam on positioner
- Use a smart positioner with a characterizer
- Characterize controller output in PLC or DCS

Controller tuning

• Adjusting controller parameters:

- Proportional
- Integral
- Derivative
- To control a process with
 - Gain
 - Dead time
 - Lag

Effects of improper tuning

Cyclic and slow recovery rate

Effects of improper tuning - II

Origins of improper tuning

- Trial and error tuning
- Tuning at only one operating point
- Compensating for process deficiencies
- Most tuning rules give inadequate robustness

Proper tuning methods

Use a scientific tuning method - not trail and error

Do bump test on process
Measure Process Gain, Dead Time, Lag Time
Use a tuning rule to calculate controller settings

Use simulations for fine-tuning
Ensure adequate robustness

In most cases reduce the controller gain by 50%

Try the settings on different process models

Software Tuning Tools

Quick, easy, get it right the first time round

• Hysteresis, Stiction, Linearity diagnostics

- Modelling and Tuning
- Simulations, Robustness plots
- Report writing

TuneWizard

Conclusion

- Most control loops have deficiencies
 Check valve hysteresis
 Check for stiction
- Ensure process linearity
- Use a scientific tuning method
- Ensure adequate control loop robustness

Thank you, and Stay Tuned!

Any questions?

Booth M-52